

Fermi/NICADD Photoinjector Laboratory

http://nicadd.niu.edu/fnpl

Outline

- Introduction
- Present activities:
 - ILC-related studies
 - Advanced accelerator R&D
- Upgrade plans
 - FNPL energy upgrade @ A0
 - SMTF injector
- Conclusions & plans

Introduction

- 2 Injectors built in early 90's by FNAL/DESY with contributions from IN₂P₃ (Orsay), INFN (Milano), UCLA, ...
- 1 installed in at DESY TTF-1 (1st POP for UV SASE-FEL)
- 1 installed at FNAL in A0 building: FNPL
- FNPL is used for beam physics and advanced accelerator R&D
- FNPL is foreseen to serve as an e- injector for SMTF

Overview of FNPL infrastructure

Angular-momentum-dominated beams

- Photoinjector production of AM-dominated beam for e- cooling, flat beam production
- Check scaling law:

$$\langle L \rangle = eBs_c^2$$

Y.-E Sun et al. (U. of Chicago / FNAL /Berkeley)

Production of flat beams

350 351

X5

X4

502

X6

S5 N6 N7

1854

X8

• Use a 3 skew quadrupoles \Rightarrow torque \Rightarrow removes L_z

• 1st POP in 99 (D. Edwards et al)

• Feb 2005, achieved (95% rms) $\mathbf{e}_x / \mathbf{e}_y = 100 \pm 5 \ (=41/0.41)$

• Further optimizations with new photocathode drive laser (using stacked pulses)

Y.-E Sun et al. (U. of Chicago / FNAL/Berkeley)

Fast-kicker tests for ILC damping ring

- R&D on fast kicker aimed to shorten ILC damping ring
- Beam-based measurement of kick rising time will be done at FNPL
- Summer 2005 (installed): mockup experiment using transmission-line kicker ⇒ test of pulser + measurement methods
- In 2006 ?: install a prototype fast kicker

G. Gollin et al. (UI @ Urbana Champaign + FNAL + Cornell)

R&D toward polarized e- source for ILC

- Polarized e-

 → operation GaAs cathode in rf-gun
- GaAs requires P~10⁻¹² Torr in DC guns
- N_2 -Cooled NC rf-gun \Rightarrow lower equilibrium pressure

An RGA spectrum with and without RF in a room temperature gun. All of the gases in the system, save hydrogen, are outgassed when RF is applied to the gun.

An RGA spectrum with and without RF in a gun cooled to 92 K with liquid Nitrogen. Only methane and argon noticeably increase with RF applied.

R. Fliller III, (FNAL); SBIR with AES

R&D on 3.9 GHz accelerating mode cavity

- SCRF TM₀₁₀ mode 9-cell cavity developed for linearization of (*z*, *d*)
- Applications to many project: FELdrivers operating at 1.3 GHz, post damping ring BC for ILC

First 9-cell cavity built at FNAL (goal: +4 in 2005)

R&D on 3.9 GHz accelerating mode cavity

- Final cavity preparation done at FNAL (BCP, HPWR)
- Residual resistance Rres 6nW
- Achieved H=103 mT, Eac=19MV/m

- No field emission
- Maximum acc. Field does not depends on Temp.
- Q=8*109 at Eacc=15 MV/m

$$H = 103 \text{ mT}$$
 \Longrightarrow 9-cell/3.9GHz: $\Rightarrow E_{acc} = 21 \text{ MV/m}$
TESLA: $\Rightarrow E_{acc} = 24 \text{ MV/m}$

N. Solyak et al. (FNAL)

R&D on 3.9 GHz Deflecting cavity

• SCRF TM₁₁₀ mode (13-cell) cavity initially developed for CKM exp.

 Can be used as bunch length diagnostics

Crab cavity for ILC

• Longitudinal-to-transverse emittance exchanger

Beam simulation with modeled 13-cell EM fields showing bunch length measurement at the FNPL upgrade

R&D on 3.9 GHz Deflecting cavity

• 3-cell prototype of the deflecting cavity perform beyond specs

 eV_{\perp} (MV/m)

L. Bellantoni, et al. (FNAL/U. of Rutgers)

Bunch-length diagnostics with coherent radiation

CTR autocorrelation

$$\frac{d^2W}{d\mathbf{w}d\Omega} \propto \left[N + N(N-1) |\Lambda(\mathbf{w})|^2 \right]$$

Many limitations for sub-mm
 bunch (FIR detectors, diffraction,
 ...) being investigated at FNPL

D. Mihalcea U. Happek et al. (NIU & U. of Georgia)

Plasma focusing in under-dense regime

• Uses electrostatic forces to focus beam in both directions

•
$$B' = \frac{en_p}{2\mathbf{e}_0 c} \approx 3 \times 10^{-11} n_p$$
 [T/m]

FNAL AAC SMTF May 11th, 2005 Philippe Piot 14

Inverse Cerenkov acceleration (ICA)

Upgrade plans for FNPL

- Main motivation for upgrade: higher energy; beam more rigid + less subject to space charge forces $O(\gamma^2)\sim 1/10$
- In the upgrade process some problems with the present beamline will be addressed (e.g. bunch compression)
- Recycle present beamline
- Staged upgrade:
 - Early Jan 2006: install 2nd cavity + new downstream beamline that still fits in the present A0 bunker (FNPL upgrade @ A0)
 - ⇒ possible test with beam of 3.9 GHz cavities
 - ⇒ beam physics
 - In SMTF building: re-optimize injector for ILC parameters integrate the two 3.9 GHz cavities in the injector design
 - ⇒ provide a 40-50 MeV e- injector for SMTF
 - ⇒ continue beam physics and adv. acc. R&D
 - In parallel: continue upgrading the photocathode drive-laser and develop a cylindrical-symmetric rf-gun

Upgrade plans for FNPL: cavity 2

- Nov. 2004, DESY sent to FNAL TTF-1 booster cay.
- Goal: replace 12 MV/m cav with 25 MV/m cav.
- Since Nov. 2004 FNAL+DESY work on its upgrade
- Retrofitting TESLA type I (12 MV/m) cryovessel for type III (25 MV/m)

T. Koeth et al. (Rutgers Univ. / FNAL)

Overview of FNPL upgrade @ A0

Generation and acceleration section

Overview of FNPL upgrade @ A0

FNPL upgrade @ A0: ILC parameters

- Generation of 3.2 nC with $\gamma \epsilon < 5$ mm-mrad possible
- Bunch compression \Rightarrow high \hat{I} \Rightarrow wakefield, HOM studies

- w/o 3rd harm section (w long cathode laser) BC is nonlinear
- Can get σ_t close to ILC specs

FNAL AAC SMTF May 11th, 2005 Philippe Piot 20

FNPL upgrade @ A0: cavities tests

- Do beam-based (HOM-based) alignment of cap cav 2
- Ideally would like to install both 3.9 GHz cavities in FNPL; but can do relevant tests for each cavity
 - Test of bunch length measurement using TM₁₁₀ cavity located downstream BC
 - Test of TM_{010} cavity \Rightarrow demonstrate flattening of the rfpotential by observing reduction of energy spectrum
- Improvement/development on LLRF system

FNAL AAC SMTF May 11th, 2005 Philippe Piot 21

Overview of FNPL @ SMTF

- Re-locate FNPL at SMTF location
- re-optimize distance between rf-gun and 1st cavity
- integrate both 3.9 GHz cavities in the accelerator (if proper HOM-damping possible for deflecting cavity)

FNAL AAC SMTF May 11th, 2005 Philippe Piot 22

Injector for SMTF: needed upgrades

- RF and beam pulse length
 - Presently do not need long bunch trains for experiments
 - Gun limited to ~200 µs (breakdown at coupling slot)
 - Modulator limited to 600 μs
 ⇒ upgrade both gun and modulator for long pulses and 5Hz operation
- Photocathode laser stability presently being improved (new diode-pumped osc.); amplification stages need upgrading too
- Bunch spacing can be decreased to 337 ns with new LLRF oscillator + minor change on photocathode laser
- ILC-like parameter:
 - bunch length

 ⇒ better when 3rd harmonic section installed
 - Round beam emittance meet requirement for ILC DR at 3.2 nC

 - Transverse deflecting cavity can be used as a longitudinal phase space diagnostics

Current plans for FNPL

- Continue current activities up to early 2006:
 - Further optimizations of flat beams
 - Beam dynamics study of beam parameters for different laser time profiles (uniform vs Gaussian)
 - New diagnostics: OTRI, test of new OTR radiator, TOF measurements, EO-imaging
- Early 2006 install 2nd cavity "cap cav. 2"
 - optimize beam parameters at 40-50 MeV
 - HOM measurements?
 - Laser acceleration experiment in user area?
- Later in 2006/2007:
 - Modify bunch compressor
 - install def. cavity (need 3.9 GHz rf-system integrated)